Гаметогенез – это процесс формирования половых клеток. Гаметы образование В результате какого процесса образуются гаметы

25.02.2022

Образование специализированных локальных популяций наиболее характерно для организмов, остающихся в течение большей части жизненного цикла прикрепленными. Причина в том, что подвижные организмы в значительной мере контролируют условия своего существования: они могут избежать гибельных или неблагоприятных местообитаний или удалиться из них и приступить к активному поиску новых; неподвижные же организмы- высшие растения, многие морские водоросли, кораллы- подобной свободой не располагают; по завершении рассе-лительной стадии жизненного цикла им приходится либо жить в условиях, существующих там, где они осели, либо погибать. Как заметил Брэдшоу (Bradshaw, 1972), «...растение не в состоянии перебежать на новое место или спрятаться в укромном уголке». Все, что может высшее растение - это, разрастаясь и «перерастая» с места на место, выискивать ресурсы или выбираться за пределы неблагоприятного участка; выдрать себя с корнями и пересадить себя по собственному выбору в другое место оно ни ка,к не может. Его потомство (семена, пыльца или гаметы) подвержено всем превратностям пассивного распространения ветром, водой или животными (на поверхности или внутри тела). По этим причинам популяции неподвижных организмов подвергаются особенно сильному воздействию естественного отбора.[ ...]

Образованию спор из спорогенной ткани (археспория) спорангия предшествует мейоз. При этом, как мы уже знаем, число хромосом уменьшается вдвое, и спора имеет одинарный набор хромосом, она гаплоидна. Гаплоидными являются протонема, гаметофоры, органы полового размножения (архегонии и антеридии) и, конечно, гаметы. Все эти структуры относятся к половому поколению - га-метофазе.[ ...]

Образование зооспор и гамет у бурых водорослей происходит во вместилищах двух основных типов: одногнездных (рис. 121, 2) и много-гнездных (рис. 128, 1 а). Многогнездные вместилища могут функционировать как спорангии и как гаметангии. Внешне они при этом не отличаются так же, как зооспоры и гаметы. Одногнездные вместилища чаще бывают спорангиями. Мейоз у бурых водорослей происходит при образовании спор в одногнездных спорангиях, лишь у циклоспоровых он приходится на момент образования гамет.[ ...]

С образованием споры начинается гаплоидная фаза в жизненном цикле папоротника, которая заканчивается образованием гамет. Гаметы образуются па гаметофите (половом поколении, или заростке) папоротника, возникающем из прорастающей споры. Но из колоссального количества спор (обычно несколько десятков миллионов), производимого каждый раз спорофитом, лишь сравнительно небольшая часть попадает в достаточно благоприятные условия для прорастания, а из проросших спор далеко не все достигают стадии зрелого гаметофита.[ ...]

Мейоз при образовании пыльцы и зародышевого мешка у гаплоидов протекает с большими нарушениями, что способствует стерильности гамет. У таких растений хромосомы в метафазе первого деления мейоза при микроспорогенезе остаются унива-лентами, располагаются неправильно и неравномерно расходятся в анафазе первого деления, вследствие чего образуются ядра с разными числами хромосом. Отмечены случаи возникновения реституционных ядер в результате выпадения редукционного деления и образования диад с диплоидным числом хромосом.[ ...]

После слияния гамет и образования зиготы наступает длительный период покоя, который может продолжаться всю зиму и больше. В зиготе два из четырех или один из двух хло-ропластов разрушаются (в зависимости от того, сколько их в клетке). Ядра гамет лежат рядом во время периода покоя, а затем сливаются как раз перед прорастанием зиготы. Процесс прорастания зиготы удавалось наблюдать очень редко, и поэтому он еще слабо изучен.[ ...]

В первые минуты образования зиготы в ней появляются многочисленные сокращающиеся вакуоли. Маленькие вакуоли сливаются в более крупные. Каждая вакуоля пульсирует в течение 4-7 мин, затем сжимается, и ее содержимое выходит наружу. Действие пульсирующих вакуолей длится от 4 до 32 мин, до тех пор пока прозрачные места зиготы перестают быть видимыми. За этот период (от 1 до 3,5 ч) зигота значительно сокращается. Внутри ее хлоро-пласты и пиреноиды располагаются в периферическом слое. Затем начинают появляться первые признаки орнаментации зиготы - конусовидные бугорки, разбросанные по ее поверхности. Постепенно они вытягиваются и приобретают вид шипов. За время разрастания шипов, которое продолжается 2-3 ч, зигота опять увеличивается в размерах и становится такой же, как при слиянии гамет.[ ...]

В результате слияния гамет образуется шаровидная зигота, при этом жгутики отпадают и появляется оболочка. Зиготы некоторых водорослей какое-то время сохраняют жгутики, тогда получается планозигота, которая способна плавать от нескольких дней до трех недель. В зиготе происходит слияние двух ядер гамет, и она становится диплоидной. В дальнейшем зиготы разных водорослей ведут себя различно. Одни зиготы вырабатывают толстую оболочку (гиппозиготы) и впадают в период покоя, длящийся до нескольких месяцев. Другие зиготы прорастают без периода покоя. В одпих случаях из зигот непосредственно вырастают новые слоевища. В других зиготы делятся с мейозом и образованием зооспор; такие зиготы предварительно растут, и из них в зависимости от размеров выходят 4-32 зооспоры.[ ...]

Половое размножение - это образование нового организма при участии двух родительских особей. При половом размножении происходит слияние половых клеток - гамет мужского и женского организма. Новый организм несет наследственную информацию от обоих родителей. Половые клетки формируются в результате особого типа деления. В этом случае в отличие от клеток взрослого организма, которые несут диплоидный (двойной) набор хромосом, образующиеся гаметы имеют гаплоидный (одинарный) набор. В результате оплодотворения парный, диплоидный набор хромосом восстанавливается. Одна хромосома из пары является отцовской, а другая - материнской. Гаметы образуются в половых железах или в специализированных клетках в процессе мейоза.[ ...]

Оплодотворение начинается с образования и роста пыльцевой трубки, которая активно прокладывает себе путь через ткани мегаспорапгия (нуцеллуса) по направлению к архегонию. Приблизительно за неделю до самого акта оплодотворения ядро сперматогенной клетки делится, образуя две одинаковые или неравные по размерам (у араукариевых и сосновых) мужские гаметы. Кончик пыльцевой трубки прокладывает себе путь между шейковыми клетками архегония и достигает яйцеклетки. Здесь он разрывается, выпуская мужские гаметы в цитоплазму яйцеклетки. Вслед за этим одна из двух мужских гамет входит в яйцеклетку. Слияние двух ядер происходит очень медленно, но в конце концов они соединяются, образуя первое диплоидиое ядро спорофита.[ ...]

Оплодотворение - объединение гамет, сопровождающееся образованием зиготы.[ ...]

Гаметофит - стадия, связанная с образованием гамет в жизненном цикле растений.[ ...]

В животном царстве мейоз ведет к образованию половых клеток - гамет и обычно только эти клетки содержат гаилоидный набор хромосом. У растений мейоз может происходить на разных этапах жизненного цикла, причем в качестве гаплоидных продуктов у них образуются как половые клетки - гаметы, так и бесполовые споры. Продолжительность жизни гамет ограничена и составляет от нескольких минут до нескольких суток, после чего неоплодотворенные гаметы пропадают.[ ...]

У десмидиевых может происходить также образование двойных зигот. Они развиваются при копуляции четырех клеток, возникших путем последовательного деления одной особи (рис. 256, 7). У видов клостериума способ образования двойных зигот иной: в каждой клетке сначала развиваются две особые гаметы, которые, сливаясь, дают двойные зиготы. Очень редко в образовании зигот десмидиевых принимают участие три или четыре особи.[ ...]

Женские гаметы крупные, неподвижные; мужские - более мелкие, двужгутиковые. При переходе к половому размножению часть клеток в верхней половипе слоевища подвергается последовательному делению и дает начало многослойной половой ткани. В пределах этой ткани хорошо различаются темные и светлые участки, располагающиеся попарно и соответствующие скоплениям женских и мужских клеток. В каждой клетке образуется в конечном итоге по одной гамете. Зигота, как и апланоспоры, прорастает в пластинчатое слоевище. Гаметофит, вплоть до образования половых клеток, морфологически подобен спорофиту, поэтому цикл развития празиолы можно считать изоморфным. Своеобразие его заключается в необычном строении половой ткани.[ ...]

Поскольку при половом процессе в результате слияния гамет и их ядер происходит удвоение набора хромосом в ядре, то в последующем в какой-то момент цикла развития наступает редукционное деление ядра (мейоз), в результате которого дочерние ядра получают одинарный набор хромосом. Спорофиты многих водорослей диплоидные, и мейоз в цикле их развития совпадает с моментом образования спор, из которых развиваются гаплоидные гаметоспо-рофиты или гаметофиты. Такой мейоз называют спорической редукцией (рис. 2Ъ,1).[ ...]

Как правило, мутации количества хромосом происходят в гаметах одного из родителей. Поэтому, все клетки организма, в зачатии которого принимала участие одна из мутантных гамет, будут содержать аномальный хромосомный набор. Однако иногда количественные хромосомные мутации могут случаться в процессе первых делений зиготы, образованной нормальными гаметами. Из такой зиготы разовьется организм, часть клеток которого будет иметь нормальный диплоидный набор, другая же часть - аномальный. Это явление называют хромосомным мозаицизмом, а индивидов, обладающих мозаицизмом - хромосомными мозаиками. Мозаицизм более част по половым хромосомам. Такие мозаики имеют генотип Х/ХХ, Х/ХУ, ХХ/ХУ, ХХУ/ХХ.[ ...]

У высших животных в случае мужских особей мейоз сопровождается образованием четырех функционально активных гамет (рис. 80). Напротив, у женских особей каждый овоцит II порядка дает лишь одну яйцеклетку. Другие ядерные продукты женского мейоза представляют собой три редукционных тельца, которые не участвуют в размножении и дегенерируют.[ ...]

Изогаметы развиваются в особых сидячих «спорангиях». Это шаровидные образования, занимающие разное положение на нитях: они могут быть верхушечными, боковыми, интер-калярными. Развиваются они преимущественно на стелющихся нитях. Эти сидячие «спорангии» образуются в результате увеличепия размеров клеток и, в отличие от спорангиев на ножке, не отделяются от нити при созревании гамет. Не всегда развивающиеся в них двужгутиковые клетки размножения ведут себя как гаметы, нередко они прорастают без слияния или дают апланоспоры.[ ...]

Рассмотрим это на примере с геномными формулами. Растения РгСВО дают гаметы, имеющие геномную структуру АВБЕВ2 (от 0 до 7). При оплодотворении их гаметой мягкой пшеницы с геномами АВВ возникают растения Р3(В2), которые имеют следующую геномную структуру: АА +ВВ + ВВ + Е(от 0 до 7) и В2 (от О до 7). Хромосомы геномов Е и В2, как не имеющие партнеров, будут элиминироваться уже при образовании гамет Р3. И в следующем, четвертом поколении многие растения будут иметь геномную структуру АА + ВВ + ВВ, т. е. это будут растения типа мягкой пшеницы, у которых еще содержатся единичные хромосомы геномов В2 и Е и поэтому сохранятся некоторые черты пырея. Но в дальнейшем и эти пырейные хромосомы будут элиминироваться. Пырейный наследственных! материал у пшенично-пырейных гибридов типа мягкой пшеницы может сохраняться в форме отдельных пырейных сегментов в пшеничных хромосомах, илит как теперь отмечают некоторые исследователи, отдельные пырейные хромосомы могут быть в пшенично-пырейных гибридах как дополнительные пли заменяющие пшенпчные хромосомы. Но во всех этих случаях растення относятся к типу однолетних мягких пшениц, а пырейные признаки у них проявляются в слабой форме.[ ...]

Особенность конъюгации у мужоции заключается в том, что эигота еще до образования оболочки отделяется от образовавших ее клеток двумя, тремя или четырьмя перегородками.[ ...]

Для выхода гамет служит отверстие с неровными краями во внешней стенке клетки (рис. 219,7). Зигота развивается в одноклеточный спорофит. При этом она силь-по увеличивается в размерах и покрывается толстой оболочкой (рис. 219, 5). Через более или менее длительное время содержимое этого одноклеточного растения делится с образованием зооспор. Таким образом, здесь смена форм развития гетероморфная.[ ...]

У многоклеточных организмов (растений и животных) половое размножение связано с образованием зародошевых или половых клеток (гамет), оплодотворением и образованием зигот.[ ...]

В мегаспорангии эфедры из мегаспоры в результате свободного ядерного деления и последующего образования клеточных перегородок развивается массивный женский гамето-фит. В каждом из них закладываются обычно два архегония. Архегоний имеет длинную шейку, состоящую из 32 или более клеток. При делении ядра центральной клетки архегония между брюшным канальцевым ядром и ядром яйцеклетки не образуется клеточной перегородки.[ ...]

В половом размножении принимают участие две родительские особи, каждая из которых участвует в образовании нового организма, внося лишь одну половую клетку - гамету (яйцеклетку или сперматозоид). Каждая гамета несет половинный набор хромосом. В результате слияния двух гамет образуется зигота, из которой развивается новый организм. Зигота в результате получает наследственные признаки обоих родителей.[ ...]

У современных представителей порядка известно только половое размножение. Половой процесс - изогамия. Гаметы образуются в специальных гаметангиях. У большинства дазикладовых гаметангии возникают как шаровидные выросты на вершине или сбоку ветвей первого порядка и соответствуют видоизмененным ветвям второго порядка (рис. 232, 3, 4). У аце-табулярии гаметангии образуются на коротких сегментах первого порядка как специальные выросты (рис. 232, 9). Внутри гаметангия образуются толстостенные многоядерные цисты со специальной крышечкой (рис. 232, 10). Зрелые цисты содержат множество гамет. При разрушении стенок гаметангия цисты выходят во внешнюю среду и уже здесь из них высвобождаются гаметы. Цисты, а не зиготы могут служить покоящимися стадиями. Существует мнение, что образование цист связано с обызвествлением слоевища. У некоторых лишенных извести родов их нет и гаметы образуются непосредственно в гаметангиях.[ ...]

В последующем получила развитие анизогамия (от греч. anisos - неравный, games - брак), характеризующаяся дифференцировкой гамет, различающихся между собой лишь по величине. Примером анизогамии является образование гамет также у ряда видов простейших.[ ...]

В результате мейоза из материнских клеток микроспор образуются тетрады микроспор, развивающиеся в дальнейшем в мужские гаметы. Существуют три типа образования тетрад микроспор (рис. 94): сукцессивный (последовательный), промежуточный и симультанный (одновременный).[ ...]

По существу мейоз представляет собой два деления, в которых клетки делятся дважды, а хромосомы только один раз. Это приводит к образованию четырех клеток, каждая из которых имеет гаплоидное число хромосом, т. е. половинный набор хромосом соматических клеток. Каждая из этих четырех клеток потенциально является гаметой. Оплодотворение (слияние двух гамет) восстанавливает диплоидное число хромосом.[ ...]

Род характеризуется изоморфной сменой форм развития и отличить половые растения от бесполых по внешнему виду невозможно. Зрелые гаметы и зооспоры выходят в окружающую среду через одно округлое отверстие - пору, образующуюся на вершине сосочкообразного изгиба во внешней стенке клетки (рис. 218, 2). При прорастании зооспор и зигот энтероморфа, как и все водоросли семейства ульвовых, проходит стадию однорядной нити (рис. 218, 3-7). Клетка, от которой начинается развитие, делится на две - апикальную и базальную. В результате поперечных делений первой образуется вертикальная нить, вторая превращается в первичный ризоид. Позднее нить преобразуется в трубчатое слоевище. При изменении условий среды первые деления могут вести к образованию стелющихся нитей, расположенных в форме диска, из клеток которого уже позднее вырастает одна или несколько вертикальных однорядных нитей.[ ...]

Продолжительность гаплофазы и диплофазы в разных систематических группах растений бывает различной, в то время как процессы, непосредственно связанные с образованием гамет (мейотическое деление), исключительно сходны между собой.[ ...]

Семенные растения. В наши дни голосеменные представлены примерно 700 видами кустарников и деревьев. У этих растений имеются семена и осуществляется редукция гамето-фита. Образование половых клеток, оплодотворение и созревание семян происходят на взрослом растении - спорофите. Наличие семян резко усиливает возможности растений к освоению новых пространств. Собственно говоря, наличие семян в какой-то степени заменяет невозможность растений к передвижению, как бы компенсируя их неподвижность относительно животных. Семя также способствует большей устойчивости растений к воздействию неблагоприятных факторов среды. Голосеменные подразделяют на хвойные-около 560 современных видов; саговники - известные с каменноугольного периода, и гинкго-также реликтовые. Последние два класса имеют весьма ограниченное распространение.[ ...]

Мейоз представляет логически необходимую часть жизненного цикла, размножающегося половым путем, Мейоз обеспечивает расщепление генов - отдельных участков ДНК по отдельным гаметам, в результате чего происходит разнообразное сочетание генов в гаметах. В отношении поддержания постоянства хромосом в клетке оплодотворение составляет антитезу (противоположное) мейозу, о процессе оплодотворения происходит слияние гаплоидных ядер двух разнополых гамет с образованием одной клетки - зиготы с диплоидным ядром.[ ...]

Наиболее широко распространена диктиота дихотомическая. Ее слоевища образуют большие дерновинки высотой до 20 см, ширина ветвей достигает 4-8 мм. Диктиота дихотомическая интересна четкими периодами в образовании и созревании гаметангиев. У берегов Англии гаметангии начинают развиваться в период квадратурных приливов, а окончательное созревание и выход гамет происходит в течение нескольких приливов, следующих после самого высокого сизигийного прилива. При этом гаметы созревают каждые две недели. Такая периодичность в размножении и связь его с лунным ритмом сохранялась при выдерживании слоевищ в лаборатории в течение нескольких месяцев. У Атлантического побережья Северной Америки созревание гамет происходит с интервалом в один месяц. Развитие гамет начинается за день до сизигийного прилива в полнолуние или на следующий день, гаметы созревают 6 или 8 дней спустя. В заливе Петра Великого (Японское море) обычно чаще встречаются растения с тетраспорангиями, которые иногда все превращаются в проростки па материнских растениях, и ветви последних становятся лохматыми, так как проростки, прежде чем отделиться, вырастают высотой в несколько миллиметров. Диктиота дихотомическая растет в верхней сублиторали в местах с движением воды.[ ...]

Механизмы полиплоидии заключаются в том, что они являются результатом извращений одного или более митотических делений клеток зародыша или результатом нерасхождения в период мейоза всего набора хромосом, ведущего к образованию диплоидных гамет. Нерасхождение хромосом у женщин имеет место в 80% случаев, а у мужчин оно наблюдается в 20% случаев, причем оно отмечается как в первом, так и во втором мейотических делениях.[ ...]

В отличие от других многоклеточных водорослей у бурых водорослей, наряду с обычными одногнездными спорангиями (рис. 121, 2), имеются многогнездные спорангии и гаметангии, неправильно называемые многоклеточными (рис. 128, 1 а). Перед образованием зооспор или гамет содержимое многогнездных вместилищ делится тонкими перегородками на камеры, в которых оказываются заключенными по одному ядру с участком цитоплазмы. В каждой камере развивается по одной, реже по две зооспоры или гаметы. На поверхности слоевища многих бурых водорослей развиваются особые многоклеточные волоски, имеющие вид нити из одного ряда клеток с зоной роста при основании; клетки зоны роста делятся чаще других и поэтому имеют мелкие размеры (рис. 121, 1 б).[ ...]

Стерины с 28 и 29 атомами углерода могут быть биогенетическими предшественниками различьых фитоэкдизонов (см. выше). У водорослей Achlya bisexual is и A. ambisexual is обнаружен С29-стероид, обладающий гормональной активностью - антеридиол.[ ...]

Формирование пыльцы. В пыльнике пыльцевые материнские клетки проходят мейоз и образуют микроспоры - гаплоидные мужские споры, которые по окончании развития известны как пыльца. Пыльцевое зерно можно считать как бы отдельным растением, мужским гаметофи-том (рис. 117). Такое гаплоидное «растение», образующее мужские гаметы, является пережитком гаметофитного поколения, которое может быть хорошо развито у более примитивных растений, например у папоротников и мхов. У семенных растений эта стадия сильно редуцирована. Гаплоидное ядро микроспоры делится митотически, образуя генеративное ядро и ядро в пыльцевой трубке. Нередко генеративное ядро оказывается связанным с цитоплазмой, что выглядит как бы клетка в клетке. Генеративное ядро 1 для образования двух ядер (мужских гамет) делится митотически либо в пыльцевом зерне, либо в пыльцевой трубке.[ ...]

У большинства водорослей в клетке присутствует всего одно ядро, но известны случаи, когда их бывает два-три и больше. Клетки с несколькими десятками, как у кладофоры, или сотнями, как у водяной сеточки (гидродиктион), ядер называют ценоцитными, Примечательно, что эти водоросли возвращаются к одноядерному состоянию при образовании специализированных клеток бесполого (апланоспоры, зооспоры) и полового (гаметы) размножения.[ ...]

Бесполое размножение у каулерповых отсутствует, по-видимому, оно было утрачено у современных форм в процессе эволюции. Половое размножение - анизогамия - характеризуется рядом особенностей, отличающих каулерповых от других семейств порядка. Во-первых, у каулерпы нет специальных органов размножения - гаметангиев. Гаметы образуются непосредственно в ассимиляционных нитях в любой их части. На отдельных участках цитоплазма сгущается, приобретает темно-зеленую окраску, затем сетчатое строение и наконец делится с образованием одноядерных гамет. Какие-либо перегородки, отделяющие место образования гамет, отсутствуют. Такое размножение называют г о л о к а р п и е й. Для выхода гамет на поверхность слоевища образуются довольно длинные выросты - папиллы; гаметы освобождаются в результате разрыва оболочки на вершинах папилл.[ ...]

При гибридизации животных сталкиваются с большими трудностями. Главные из них следующие: 1) иескрещиваемость видов между собой; 2) частичная или полная бесплодность гибридов. Основными причинами нескрещиваемости отдаленных видов и бесплодия гибридов являются генетические факторы: различные набор и структура хромосом в гаметах, неспособность их образовывать жизнеспособную зиготу, сперма из-за своих морфологических и биохимических особенностей не в состоянии лизировать оболочку чужеродной яйцеклетки, проникнуть в нее. Если гибридная зигота и образовалась то в силу эмбриональной патологии происходит или рассасывание плода на ранних стадиях формирования, или его гибель. Объясняется это тем, что иммунные защитные тела организма борются с проникающим чужеродным белком, уничтожая его. В связи с генетическими различиями родителей у гибридов процесс образования мужских и женских половых клеток нарушается и они становятся бе плодными. Стерильность гибридов вызвана аномалиями в развитии гонад и митоза.[ ...]

Клетки голые, в большинстве свободноплавающие, иногда прикрепленные при помощи волочащегося жгутика. Один плавательный и один волочащийся жгутики; оба с базальным зерном, соединенным тонким ризопластом с кинетопластом. Сократительных вакуолей чаще 1-3, реже отсутствуют. Размножение путем деления. Наблюдается копуляция гамет и автогамия. Известны покоящиеся цисты. Питание анималыюе: путем всасывания пищи острием переднего конца, прямым заглатыванием и образованием пищевых вакуолей (Lemm., 1914).[ ...]

Весь;>тот процесс, как известно, принято намывать двойным оплодотворением. Ведь согласно общепринятому в литературе определению, оплодотворение (еипгамин) - это процесс слияния, мужской п женской половых клеток (гамет) с образованием зиготы, из которой и дальнейшем разнимается новый организм. Такое определение оплодотворения можно найти в любом учебнике биологии и в любом:нщнклопедичоском словаре (в том число в советских шщпклопедиях, в Большой и Малой). И даже в известном «Словаре русского языка» С. И. Ожегова (1973) мы читаем: «Оплодотворить. 1. Создать зародыш в ком-чем-н. слиянием мужской и женской половых клеток. 2. Послужить источником развития, совершенствования». Слияние одного из сиормпев с яйцеклеткой является, несомненно, оплодотворением, но тройное слияние по является, строго говоря, оплодотворением, так как 1) центральная клетка - не гамета и 2) в результате ¡»того слияния но образуется зигота, из которой и дальнейшем развивался бы новый организм. Очевидно, тройное слияние является оплодотворением лишь в указанном Ожеговым, втором, переносном смысле. Другими словами, в выражении «двойное оплодотворение» термин «оплодотворение» применяется в двух разных, смыслах - прямом и переносном. Тем не менее выражение «двойное онлодотиороние» настолько широко вошло в литературу, что было бы нецелесообразно его заменить (а попытки такого рода делались, в том числе известным, немецким ботаником. Достаточно, если мы будем помнить, что речь идет здесь о двух разных биологических процессах, условно объединяемых общим.названием.[ ...]

Биологическая роль полового размножения исключительно велика. Несомненно, что она имеет значительные преимущества по сравнении с вегетативным размножением и размножением спорообразованием. Еще К. А. Тимирязев (1843-1920) неоднократно обращал внимание на половое размножение как на выдающийся источник изменчивости организмов, поскольку в ходе мейоза имеет место рекомбинация генов, а при объединении гамет - образование новых сочетаний генов. Можно сказать, что в природе половое размножение является доминирующим по сравнению с другими формами размножения. У животных, размножающихся половым путем, репродуктивная способность сохраняется относительно долго. Так в случае человека способность к репродукции у женщин сохраняется в основном до 40-45 лет, а у мужчин - практически всю жизнь.[ ...]

Голосеменные отличаются от папоротников также развитием мужского гаметофита, строением и способом прорастания микроспор. У папоротников, где развитие гаметофита происходит обычно лишь после высеивания спор, прорастание спор происходит через так называемый тетрадный рубец, расположенный на проксимальном полюсе споры. У голосеменных, где мужской гаметофит сильно упрощается и его развитие ускоряется, первые деления ядра микроспоры происходят уже внутри микроспорангия. В связи с ранним развитием мужского гаметофита и образованием гамет еще внутри оболочки споры возникает необходимость в приспособлении, посредством которого микроспора может изменять свой объем. Таким приспособлением оказывается борозда на дистальном полюсе микроспоры, впервые возникающая у некоторых семенных папоротников и характерная для огромного большинства голосеменных. Борозда служит не только для регулирования объема пыльцевого зерна. Она становится местом выхода из микроспоры гаустории (у низших групп) или пыльцевой трубки (у гнетовых и хвойных), также являющихся новообразованиями. Таким образом, у голосеменных, в отличие от папоротников, отверстие для выхода содержимого микроспоры образуется на дистальном полюсе. Гаустория (присоска) типа саговниковых растет горизонтально и служит лишь для прикрепления и питания мужского гаметофита; настоящая пыльцевая трубка хвойных и гнетовых растет вертикально и служит главным образом для проведения спермиев к яйцеклеткам, т. е. является проводником (вектором), а не только присоской. Хотя обычно оба эти образования называют пыльцевыми трубками, но морфологически и функционально они очень различны.[ ...]

Помимо скрещиваний, результаты которых приведены выше, для доказательства генной гипотезы Г. Мендель обратился также к обратным скрещиваниям, получившим позднее в литературе название анализирующих (тест-скрещиваний). Смысл этих скрещиваний заключается в том, что гетерозиготные гибриды Е которые давали, например, круглые семена и происходили из скрещиваний между исходными растениями, дающими круглые (1Ш) и шероховатые (гг) семена, вновь скрещивали с исходными (родительскими) гомозиготными рецессивными растениями, продуцирующими шероховатые семена. Поскольку гаметы, проецируемые гетерозиготным (Иг) гибридом Е1, всегда являются чистыми и могут нести только или аллель И, или аллель г, причем половина гамет должна быть гаметами К, половина - гаметами г, а все гаметы, продуцируемые исходным гомозиготным рецессивным (гг) растением, должны быть только гаметами г, в случае справедливости генной гипотезы следовало ожидать, что обратное скрещивание таких растений должно привести к образованию зигот наполовину Иг и наполовину гг. Другими словами, образующееся в результате таких обратных скрещиваний потомство должно состоять наполовину из гетерозиготных организмов, проецирующих круглые семена (Иг), и наполовину из гомозиготных рецессивных организмов, продуцирующих семена шероховатой формы (гг). Осуществив обратные скрещивания и проанализировав свойства появлявшихся в этих скрещиваниях растений, Г. Мендель обнаружил, что они действительно являются наполовину гетерозиготными организмами и наполовину гомозиготными, т. е. отношение между ними составляло 1:1.[ ...]

Проведение гибридизации связано с рядом трудностей, вытекающих из видовых особенностей гибридизируемых животных. К главнейшим из них относятся: 1) разница в строений половых органов, затрудняющая акт спаривания, 2) отсутствие полового рефлекса у самца на самку другого вида, 3) несовпадение сезонов спаривания у животных разных видов (особенно у диких), 4) слабая жизнеспособность или гибель сперматозоидов животных одного вида в половых путях самок другого вида, 5) отсутствие реакции сперматозоидов на яйцеклетку самки другого вида и невозможность оплодотворения, 6) гибель зиготы (в случае ее образования) в самом начале развития, 7) бесплодие многих гибридов, полное или частичное (бесплодными у гибридов млекопитающих оказываются самцы). Полное бесплодие связано с отсутствием конъюгации хромосом при редукционном делении (из-за большого их несходства - негомологичности) и с образованием нежизнеспособных гамет; частичное (бесплодие гибридных самцов), - вероятно, с нарушением гормональной регуляции сперматогенеза. Часть этих трудностей может быть преодолена вмешательством человека, но есть и такие, которые пока непреодолимы.[ ...]

Большинство переносимых с помощью семятх вирусов, по-видимому, передается также и через пыльцу зараженных растений, однако не все они были адекватно изучены. Говоря иными словами, по-видимому, не существует ни одного примера какого-либо вируса, переносимого с помощью нылъцы, который по передавался бы также через семена.tИсследования, касающиеся относительной эффективности переноса вирусов через зараженную яйцеклетку и через пыльцу, немногочисленны. Что касается вируса мозаики фасоли, находящегося в растениях фасоли, то Нелсон и Даун нашли, что процент инфицированных семян, образовавшихся в результате опыления цветков здоровых растений пыльцой зараженных, был примерно том же, что и в случае образования таких семян из цветков зараженных растений, опыленных пыльцой здоровых. Однако Крэспин Медина и Грога it показали, что передача этого вируса с помощью пыльцы несколько более аффективна. Напротив, передача вируса мозаики салата-латука осуществляется через семяпочки этого растения; в результате переноса через пыльцу образуется менее 0,5% зараженных семян . Самоопыление зараженных растений может привести, по-видимому, к образованию большего количества инфицированных семян, чем в том случае, когда в этом участвует лишь одна из гамет инфицированного растения.

Процесс формирования половых клеток у растений подразделяется на два этапа: 1-й этап - спорогенез - завершается образованием гаплоидных клеток - спор, в ходе 2-го этапа - гаметогенеза - происходит ряд делений гаплоидных клеток, прежде чем образуются зрелые гаметы.

Процесс образования микроспор, или пыльцевых зерен, у растений называют микроспорогенезом , а процесс образования мегаспор (или макроспор) - мега- или макроспорогенезом . Микроспорогенез протекает аналогично делению созревания у животных мужских половых клеток до стадии сперматиды, а мегаспорогенез - соответственно до стадии незрелой яйцеклетки - ооцита II.

Процесс гаметогенеза у растений в принципе сходен с таковым у животных, но протекает несколько отличным путем. У животных после двух мейотических делений формируются гаметы, и никаких дополнительных клеточных делений не происходит. У растений в результате двух мейотических делений возникает гаплоидная спора, из которой развивается гаметофит, представляющий собой у низших растений (грибов, печеночников, мхов, ряда водорослей) целый организм и наиболее продолжительную стадию цикла существования. У высших растений гаплоидная фаза редуцирована, однако ядра мужской и женской спор претерпевают ряд митотических делений, прежде чем образуются гаметы.

Микроспорогенез и микрогаметогенез

Мы рассмотрим микроспорогенез и микрогаметогенез на примере покрытосеменных растений как наиболее общем. В субэпидермальной ткани молодого пыльника обособляется специальная спорогенная ткань, называемая археспорием . Каждая первичная археспориальная клетка после ряда делении становится материнской клеткой пыльцы (микроспороцитом), которая проходит все фазы мейоза.

В результате двух мейотических делений возникают четыре гаплоидные микроспоры. Последние лежат четвёрками и называются клеточными тетрадами .

У однодольных растений каждое деление ядра в мейозе, как правило, сопровождается цитокинезом; у двудольных оба деления клетки наступают одновременно по окончании мейоза.

При созревании клеточные тетрады распадаются на отдельные микроспоры с образованием внутренней (интина) и наружной (экзина) оболочек. Наружная оболочка, как правило, грубая, кутинизированная, поверхность ее либо гладкая, либо шероховатая; приспособленная для переноса пыльцы и прилипания ее к рыльцу пестика. Этим заканчивается микроспорогенез вслед за образованием одноядерной микроспоры начинается микрогаметогенез. Первое митотическое деление микроспоры приводит к образованию вегетативной и генеративной клеток. В дальнейшем вегетативная клетка и ее ядро не делятся. В ней накапливаются запасные питательные вещества, который в последующем обеспечивают деление генеративной клетки и рост пыльцевой трубки в столбике пестика.

Генеративная клетка, содержащая меньшее количество цитоплазмы, вновь делится. Это деление может осуществляться еще в пыльцевом зерне или в процессе его прорастания в пыльцевой трубке. В результате образуются две мужские половые клетки, которые в отличие от сперматозоидов животных называются спермиоклетками, или спермиями .

Таким образом, из одной споры с гаплоидным набором хромосом в результате двух митотических делений образуются три ядра: Два из них - спермии и одно - вегетативное. При образовании пыльцевой трубки это вегетативное ядро в полужидком диффузном состоянии переходит в пыльцевую трубку.

Процесс деления генеративной клетки и образование спермиев в пыльцевой трубке были впервые подробно изучены С. Г. Навашиным в 1910 г. на лилейных растениях.

Мегаспорогенез и мегагаметогенез

У покрытосеменных растений женский гаметофит - это зародышевый мешок, который закладывается и развивается внутри семяпочки.

Развитию женского гаметофита у высших покрытосеменных растений предшествует мегаспорогенез. В субэпидермальном слое молодой семяпочки обособляется археспориальная клетка, чаще она только одна. Клетка археспория растет, превращаясь в материнскую клетку мегаспоры. В результате двух делений мейоза материнской клетки мегаспоры образуется тетрада мегаспор. Каждая из клеток тетрады по числу хромосом является гаплоидной. Однако только одна из них продолжает развиваться, остальные три дегенерируют (моноспорический тип развития), судьба этих клеток напоминает судьбу редукционных телец при созревании яйцеклеток у животных.

На следующем этапе осуществляется мегагаметогенез. Оставшаяся функционировать мегаспора продолжает расти и затем ее ядро претерпевает ряд эквационных делений. При этом сама клетка не делится, делится только ядро.

У разных систематических групп растений число эквационных делений ядра мегаспоры может варьировать от одного до трех. У большинства растений (70% видов покрытосеменных) этих делений, как правило, в результате возникает восемь наследственно одинаковых ядер, вовремя этих делений ядра занимают полярное положение, четыре из них оказываются лежащими ближе к микропиле (место проникновения спермиев), а четыре других - в противоположном конце зародышевого мешка, называемого халазальным. Дальше эти ядра обособляются в самостоятельные клетки, имеющие значительные количества цитоплазмы.

Из четырех клеток, располагающихся у микропиле, три клетки - яйцеклетка, и две так называемые синергиды образуют яйцевой аппарат. Однако из этих трех клеток после оплодотворения развивается только одна, а две другие разрушаются. Четвертое ядро отходит к центру зародышевого мешка, где сливается с одним из ядер, отошедшим от халазального конца. Слившиеся в центральной части два гаплоидных ядра образуют одно диплоидное - вторичное или центральное, ядро зародышевого мешка. Это ядро с цитоплазмой зародышевого мешка называют обычно центральной клеткой зародышевого мешка. Однако часто полярные ядра, передвинувшиеся к центру, не сливаются до оплодотворения. Оставшиеся у халазального конца зародышевого мешка три ядра также обособляются в клетки; они называются антиподами .

Таким образом, в результате трех митотических делений в зародышевом мешке образуется 8 наследственно одинаковых гаплоидных ядер, из которых только одно дает яйцеклетку.

Рассмотренная схема образования восьмиядерного зародышевого мешка из одной мегаспоры является наиболее типичной. Однако у различных групп растений этот процесс протекает весьма разнообразно. В одних случаях, как мы только что рассмотрели, развитие зародышевого мешка начинается из одной гаплоидной споры (моноспорический тип развития), в других - из двух (биспорический тип) и четырех спор (тетраспорический тип).

Как мы указывали, при моноспорическом типе развивается лишь одна мегаспора из четырех, а остальные три разрушаются подобно тому, что имеет место с редукционными тельцами у животных. При других типах развития зародышевого мешка сохраняется разное количество мегаспор, возникших в результате мейоза и готовых к дальнейшим митотическим делениям.

Изучая гаметогенез, нельзя не поражаться тому параллелизму, который наблюдается при созревании половых клеток у животных и растений, несмотря на то, что их расхождение (дивергенция) в филогенезе произошло на очень раннем этапе возникновения клеточной организации. Это указывает на однотипность принципов построения ряда приспособительных механизмов как в растительном, так и животном мире.

Итак, изучение развития половых клеток у животных и у растений показало, что формирование гамет является сложным процессом. Прежде чем яйцеклетка и спермий объединятся в процессе оплодотворения, они претерпевают ряд превращений. Однако половые клетки так же, как и клетки любой другой ткани, происходят из соматических. Поэтому их нельзя рассматривать как нечто обособленное от тела организма. Вместе с тем половые клетки имеют и свои особенности. Основными характерными моментами, отличающими их от соматических клеток, являются следующие:

1. У разных животных и растений на разных стадиях дифференциации тканей зародыша происходит обособление половых клеток. Процесс закладки и дифференциации, половых клеток у животных называется зачатковым путем .

2. В процессе развития половых клеток особое значение имеет мейоз с характерными для него стадиями деления ядра, а именно профазой I, во время которой конъюгируют гомологичные хромосомы, метафазой I и анафазой I, когда осуществляется редукция числа хромосом и расхождение гомологичных хромосом к различным полюсам.

3. Главным свойством половых клеток является способность их при оплодотворении сливаться в одну с образованием зиготы, которая претерпевает затем дробление и развитие. Соматические клетки этой способностью, как правило, не обладают.

Гамета (gamete): зародышевая клетка (спермий или яйцеклетка), содержащая гаплоидный набор хромосом , то есть имеющая по одному экземпляру каждой из хромосом.

При половом способе размножения потомство, как правило, имеет двух родителей. Каждый из родителей производит половые клетки. Половые клетки, или гаметы, обладают половинным или гаплоидным набором хромосом и возникают в результате мейоза . Таким образом, гамета (от греч. gamete - жена, gametes - муж) - зрелая репродуктивная клетка, содержащая гаплоидный набор хромосом и способная при слиянии с аналогичной клеткой противоположного пола образовать зиготу , при этом число хромосом становится диплоидным. В диплоидном наборе каждая хромосома имеет себе парную (гомологичную) хромосому. Одна из гомологичных хромосом происходит от отца, другая - от матери.. Женская гамета называется яйцеклеткой , мужская - сперматозоидом . Процесс образования гамет носит общее название - гаметогенез .

У эмбрионов всех позвоночных на ранней стадии развития определенные клетки обособляются как предшественники будущих гамет. Такие первичные половые клетки мигрируют в развивающиеся гонады ( яичники у самок, семенник и у самцов), где после периода митотического размножения претерпевают мейоз и дифференцируются в зрелые гаметы. В половых клетках перед мейозом активируются дополнительные гены, которые регулируют спаривание гомологичных хромосом, рекомбинацию и разделение рекомбинированных гомологичных хромосом в анафазе первого деления.

Яйцеклетки развиваются из первичных половых клеток , которые на ранней стадии развития организма мигрируют в яичник и превращаются там в оогонии . После периода митотического размножения оогонии становятся ооцитами первого порядка , которые, вступив в первое деление мейоза , задерживаются в профазе I на время, измеряемое сутками или годами в зависимости от вида организма. В период этой задержки ооцит растет и накапливает рибосомы , мРНК и белки, зачастую используя при этом другие клетки, включая окружающие вспомогательные клетки. Дальнейшее развитие (созревание яйцеклетки) зависит от полипептидных гормонов ( гонадотропинов), которые, воздействуя на окружающие каждый ооцит вспомогательные клетки, побуждают их индуцировать созревание небольшой части ооцитов. Эти ооциты завершают первое деление мейоза, образуя маленькое полярное тельце и крупный ооцит второго порядка , который позже переходит в метафазу второго деления мейоза . У многих видов ооцит задерживается на этой стадии до тех пор, пока оплодотворение не инициирует завершение мейоза и начало развития эмбриона.

Спермий обычно представляет собой маленькую и компактную клетку, которая в высокой степени специализирована для функции внесения своей ДНК в яйцеклетку. В то время как у многих организмов весь пул ооцитов образуется еще на ранней стадии развития самки, у самцов после наступления половой зрелости в мейоз вступают все новые и новые половые клетки, причем каждый сперматоцит первого порядка дает начало четырем зрелым спермиям. Дифференцировка спермиев осуществляется после мейоза, когда ядра гаплоидны. Однако, поскольку при митотическом делении зрелых сперматогониев и сперматоцитов цитокинез не доводится до конца, потомки одного сперматогония развиваются в виде

В природе встречаются два типа размножения живых организмов - бесполое и половое.

Бесполое размножение характеризуется тем, что дочерние клетки по содержанию наследственной информации, морфологическим, анатомическим и физиологическим особенностям полностью идентичны родительским (см. разделы «Ботаника» и «Зоология»).

Половое размножение характеризуется обменом генетической информации между женскими и мужскими особями. Такой обмен осуществляется несколькими способами:

  1. образованием цитоплазматических мостиков, по которым мужская хромосома передвигается в женскую клетку (характерно для прокариотов);
  2. конъюгацией - временным соединением и обменом участками хромосом (встречается у вирусов, бактерий, инфузорий и др.);
  3. образованием особых гаплоидных половых клеток - гамет (характерно для большинства эукариотов). У разных видов животных и растений половые клетки имеют различные размеры, форму, строение и развитие.

Развитие половых клеток и оплодотворение у животных. Яйцеклетки (женские половые клетки) у животных неподвижны, имеют округлую форму, покрыты двумя оболочками - желточной и белковой и содержат запасные питательные вещества, необходимые для развития зародыша. Сперматозоиды (мужские половые клетки) значительно меньше яйцеклеток, они подвижны, имеют форму длинной нити, состоящей из головки, шейки и хвостика. Головка несколько расширена, в ней расположено ядро, передний конец ее заострен.

В шейке находится центриоль, а хвостик по строению напоминает жгутик и является органоидом движения. Развиваются половые клетки в половых железах - яичниках и семенниках. В них различают 3 зоны:

  1. в зоне размножения первичные клетки многократно делятся путем митоза;
  2. в зоне роста исходные клетки усиленно растут, особенно при образовании яйцеклеток;
  3. в зоне созревания происходит два своеобразных деления, в результате которых в семенниках образуются четыре равные по размеру гаплоидные (n) клетки, каждая из которых превращается в сперматозоид, а в яичниках образуются также четыре гаплоидные клетки, из которых только одна, крупная, превращается в яйцеклетку а три мелкие (направительные тельца) гибнут.

Мейоз - это деление в зоне созревания половых клеток, сопровождающееся уменьшением числа хромосом вдвое (цв. табл. XIII). Он состоит из двух специфических, последовательно идущих делений, имеющих те же фазы, что и митоз. Однако, как показано в таблице, продолжительность отдельных фаз и происходящие в них процессы значительно отличаются от митоза.

Эти отличия в основном состоят в следующем. В мейозе профаза I более продолжительна. В ней происходит конъюгация гомологичных хромосом и обмен генетической информацией. В анафазе I центромеры, скрепляющие хроматиды, не делятся, а к полюсам отходит одна из гомологичных хромосом. Интерфаза перед вторым делением очень короткая, в ней ДНК не синтезируется. Клетки (гаметы), образующиеся в результате двух мейотических делений, содержат гаплоидный (одинарный) набор хромосом.

I деление

II. деление

Интерфаза

Набор хромосом (2 n). идет интенсивный синтез белков, АТФ и других органических веществ. Удваиваются хромосомы, каждая оказывается состоящей из двух сестринских хроматид, скрепленных общей центромерой

Набор хромосом 2 n. Наблюдаются те же процессы, что и в митозе; но более продолжительна, особенно при образовании яйцеклеток

Набор хромосом гаплоидный (n). Синтез органических веществ отсутствует

Не продолжительна, происходит спирализация хромосом, исчезают ядерная оболочка, ядрышко, образуется веретено деления

Более длительна. В начале фазы те же процессы, что в митозе. Кроме того, происходит конъюгация хромосом, при которой гомологичные хромосомы сближаются по всей длине и скручиваются. При этом может происходить обмен генетической информацией (перекрест хромосом). Затем хромосомы расходятся

Короткая, те же процессы, что в митозе, но при n хромосом

Метафаза

Происходит дальнейшая спирализация хромосом, их центромеры располагаются по экватору

Происходят процессы, аналогичные тем, что в митозе

Происходит то же, что в митозе, но при n хромосом

Центромеры, скреплявшие сестринские хроматиды, делятся; каждая из них становится новой хромосомой и отходит к противоположным полюсам

Центромеры не делятся. К противоположным полюсам отходит одна из гомологичных хромосом, состоящая из двух хроматид, скрепленных общей центромерой

Происходит тоже, что в митозе, но при n хромосом

Телофаза

Делится цитоплазма, образуются 2 дочерние клетки, каждая с диплоидным набором хромосом. Исчезает веретено деления, формируются ядрышки

Длится недолго. Гомологичные хромосомы попадают в разные клетки с гаплоидным набором. Цитоплазма делится не всегда

Делится цитоплазма. После двух мейотических делений образуются 4 клетки с гаплоидным набором хромосом

Оплодотворение представляет собой процесс слияния яйцеклетки и сперматозоида, при котором восстанавливается диплоидный набор хромосом. Оплодотворенная яйцеклетка называется зиготой.

Развитие половых клеток и оплодотворение у цветковых растений происходит в цветке. Мужские половые клетки созревают в пыльнике. В нем содержится множество диплоидных клеток, каждая из которых делится путем мейоза и образует 4 гаплоидных пыльцевых зерна. Каждое пыльцевое зерно делится путем митоза и образует 2 клетки - вегетативную и генеративную. Генеративная клетка еще раз делится путем митоза и образует 2 сперматозоида. Таким образом, созревшее пыльцевое зерно содержит три клетки - 1 вегетативную и 2 сперматозоида.

Женские половые клетки развиваются в семяпочке. Одна из ее клеток делится путем Мейоза и образует 4 гаплоидные клетки. Из них одна еще трижды делится путем митоза и образует 8 гаплоидных ядер зародышевого мешка, в котором 4 ядра располагаются на одном конце, а 4 - на другом. Затем от каждого конца в центр зародышевого мешка мигрирует по одному ядру; сливаясь, они образуют диплоидное ядро зародышевого мешка. Одна из 3 гаплоидных клеток, расположенных у пыльцевхода, является яйцеклеткой.

Половые клетки - гаметы (от греч. gametes – «супруг») можно обнаружить уже у двухнедельного эмбриона человека. Их называют первичными половыми клетками. В это время они совсем не похожи на сперматозоиды или яйцеклетки и выглядят абсолютно одинаковыми. Никаких различий, присущих зрелым гаметам, на этой стадии развития зародыша обнаружить у первичных половых клеток не удается. Это не единственная их особенность. Во-первых, первичные половые клетки появляются у зародыша гораздо раньше собственно половой железы (гонады), а во-вторых, они возникают на значительном удалении от того места, где эти железы сформируются позднее. В определенный момент происходит совершенно удивительный процесс – первичные половые клетки дружно устремляются к половой железе и заселяют, «колонизируют» ее.

После того, как будущие гаметы попали в половые железы, они начинают интенсивно делиться, и количество их увеличивается. На этом этапе половые клетки содержат пока то же количество хромосом, что и "телесные" (соматические ) клетки – 46. Однако для успешного осуществления своей миссии половые клетки должны иметь в 2 раза меньше хромосом. В противном случае после оплодотворения, то есть слияния гамет, клетки зародыша будут содержать не 46, как установлено природой, а 92 хромосомы. Нетрудно догадаться, что в следующих поколениях их число прогрессивно бы увеличивалось. Чтобы избежать такой ситуации формирующиеся половые клетки проходят специальное деление, которое в эмбриологии называется мейоз (греч. meiosis – «уменьшение»). В результате этого удивительного процесса диплоидный (от греч. diploos – «двойной»), набор хромосом как бы «растаскивается» на составляющие его одинарные, гаплоидные наборы (от греч. haploos – одиночный). В результате из диплодной клетки с 46 хромосомами получаются 2 гаплоидные клетки с 23 хромосомами. Вслед за этим наступает завершающий этап формирования зрелых половых клеток. Теперь в гаплоидной клетке копируются имеющиеся 23 хромосомы и эти копии используются для образования новой клетки. Таким образом, в результате описанных двух делений из одной первичной половой клетки образуется 4 новых.

Причем, в сперматогенезе (греч. genesis – зарождение, развитие) в результате мейоза появляется 4 зрелых сперматозоида с гаплоидным набором хромосом, а в процессе формирования яйцеклетки - в оогенезе (от греч. oon – «яйцо») только одна. Это происходит потому, что образовавшийся в результате мейоза второй гаплоидный набор хромосом яйцеклетка не использует для формирования новой зрелой половой клетки - ооцита, а «выбрасывает» их, как «лишние», наружу в своеобразном «мусорном контейнере», который называется полярным тельцем. Первое деление хромосомного набора завершается в оогенезе выделением первого полярного тельца непосредственно перед овуляцией. Второе репликационное деление происходит только после проникновения сперматозоида внутрь яйцеклетки и сопровождается выделением второго полярного тельца. Для эмбриологов полярные тельца – очень важные диагностические показатели. Есть первое полярное тельце, значит яйцеклетка зрелая, появилось второе полярное тельце – оплодотворение произошло.

Первичные половые клетки, оказавшиеся в мужской половой железе, до поры до времени не делятся. Их деление начинается только в период полового созревания и приводит к образованию когорты так называемых стволовых диплоидных клеток, из которых и формируются сперматозоиды. Запас стволовых клеток в яичках постоянно пополняется. Здесь уместно напомнить описанную выше особенность сперматогенеза - из одной клетки образуется 4 зрелых сперматозоида. Таким образом, после полового созревания у мужчины в течение всей жизни формируются сотни миллиардов новых сперматозоидов.

Формирование яйцеклеток протекает иначе. Едва заселив половую железу, первичные половые клетки начинают интенсивно делиться. К 5 месяцу внутриутробного развития их количество достигает 6-7 миллионов, но затем происходит массовая гибель этих клеток. В яичниках новорожденной девочки их остается не более 1-2 миллионов, к 7-летнему возрасту – всего лишь около 300 тысяч, а в период полового созревания 30 –50 тысяч. Общее же число яйцеклеток, которые достигнут зрелого состояния за период половой зрелости, будет еще меньше. Хорошо известно, что в течение одного менструального цикла в яичнике обычно созревает лишь один фолликул. Нетрудно подсчитать, что в течение репродуктивного периода, продолжающегося у женщин 30 – 35 лет, образуется около 400 зрелых яйцеклеток.

Если мейоз в сперматогенезе начинается в период полового созревания и повторяется миллиарды раз в течение жизни мужчины, в оогенезе формирующиеся женские гаметы вступают в мейоз еще в периоде внутриутробного развития. Причем начинается этот процесс почти одновременно у всех будущих яйцеклеток. Начинается, но не заканчивается! Будущие яйцеклетки доходят только до середины первой фазы мейоза, а дальше процесс деления блокируется на 12 - 50 лет! Лишь с приходом половой зрелости мейоз в оогенезе продолжится, причем не всех клеток сразу, а лишь для 1- 2 яйцеклеток ежемесячно. Полностью же процесс мейотического деления яйцеклетки завершится, как уже было сказано выше, только после ее оплодотворения! Таким образом, сперматозоид проникает в яйцеклетку, еще не завершившую деление, имеющую диплоидный набор хромосом!

Сперматогенез и оогенез – очень сложные и во многом загадочные процессы. Вместе с тем очевидна подчиненность их законам взаимосвязи и обусловленности природных явлений. Для оплодотворения одной яйцеклетки in vivo (лат. в живом организме) необходимы десятки миллионов сперматозоидов. Мужской организм вырабатывает их в гигантских количествах практически всю жизнь.

Вынашивание и рождение ребенка является чрезвычайно тяжелой нагрузкой на организм. Врачи говорят, что беременность – это проба на здоровье. Каким родится ребенок – напрямую зависит от состояния здоровья матери . Здоровье, как известно, не вечно. Старость и болезни, к сожалению, неотвратимы. Природа дает женщине строго ограниченное невосполнимое число половых клеток. Снижение способности к деторождению развивается медленно, но постепенно по наклонной. Наглядное доказательство того, что это действительно так, мы получаем, ежедневно оценивая результаты стимуляции яичников в программах ВРТ. Большая часть яйцеклеток обычно израсходована к 40 годам, а к 50 годам весь их запас полностью исчерпывается. Нередко так называемое истощение яичников наступает значительно раньше. Следует также сказать, что яйцеклетка подвержена «старению», с годами ее способность к оплодотворению снижается, процесс деления хромосом все чаще нарушается. Заниматься деторождением в позднем репродуктивном возрасте рискованно из-за возрастающей опасности рождения ребенка с хромосомной патологией. Типичным примером является синдром Дауна, который возникает из-за оставшейся при делении третьей лишней 21 хромосомы. Таким образом, ограничив репродуктивный период, природа охраняет женщину и заботится о здоровом потомстве.

По каким законам происходит деление хромосом? Как передается наследственная информация? Для того чтобы разобраться с этим вопросом, можно привести простую аналогию с картами. Представим себе молодую супружескую пару. Назовем их условно – Он и Она. В каждой его соматической клетке находятся хромосомы черной масти – трефы и пики. Набор треф от шестерки до туза он получил от своей мамы. Набор пик – от своего папы. В каждой ее соматической клетке хромосомы красной масти – бубны и червы. Набор бубен от шестерки до туза она получила от своей мамы. Набор червей – от своего папы.

Для того чтобы получить из диплоидной соматической клетки половую клетку, число хромосом должно быть уменьшено вдвое. При этом половая клетка обязательно должна содержать полный одинарный (гаплоидный) набор хромосом. Ни одна не должна потеряться! В случае карт такой набор можно получить следующим образом. Взять наугад из каждой пары карт черной масти по одной и таким образом сформировать два одиночных набора. Каждый набор будет включать все карты черной масти от шестерки до туза, однако, какие именно это будут карты (трефы или пики) определил случай. Например, в одном таком наборе шестерка может быть пиковой, а в другом – трефовой. Нетрудно прикинуть, что в примере с картами при таком выборе одиночного набора из двойного мы можем получить 2 в девятой степени комбинаций – более 500 вариантов!

Точно также будем составлять одиночный набор из ее карт красной масти. Получим еще более 500 разных вариантов. Из его одиночного и ее одиночного набора карт составим двойной набор. Он получится мягко сказать «пестреньким»: в каждой паре карт одна будет красной масти, а другая – черной. Общее число таких возможных наборов 500 х 500, то есть 250 тысяч вариантов.

Примерно также, по закону случайной выборки, поступает и природа с хромосомами в процессе мейоза. В результате из клеток с двойным, диплоидым набором хромосом получаются клетки, каждая из которых содержит одиночный, гаплоидный полный набор хромосом. Предположим, в результате мейоза в вашем теле образовалась половая клетка. Сперматозоид или яйцеклетка – в данном случае не важно. Она обязательно будет содержать гаплоидный набор хромосом – ровно 23 штуки. Что именно это за хромосомы? Рассмотрим для примера хромосому № 7. Это может быть хромосома, которую вы получили от отца. С равной вероятностью она может быть хромосомой, которую вы получили от матери. То же самое справедливо для хромосомы № 8, и для любой другой.

Поскольку у человека число хромосом гаплоидного набора равно 23, то число возможных вариантов половых гаплоидных клеток, образующихся из диплоидных соматических, равно 2 в степени 23. Получается более 8 миллионов вариантов! В процессе оплодотворения две половые клетки соединяются между собой. Следовательно, общее число таких комбинаций будет равно 8 млн. х 8 млн. = 64000 млрд. вариантов! На уровне пары гомологичных хромосом основа этого разнообразия выглядит так. Возьмем любую пару гомологичных хромосом вашего диплоидного набора. Одну из таких хромосом вы получили от матери, но это может быть хромосома либо вашей бабушки, либо вашего дедушки по материнской линии. Вторую гомологичную хромосому вы получили от отца. Однако она опять-таки может быть независимо от первой либо хромосомой вашей бабушки, либо вашего дедушки уже по отцовской линии. А таких гомологических хромосом у вас 23 пары! Получается невероятное число возможных комбинаций. Неудивительно, что при этом у одной пары родителей, рождаются дети, которые отличаются друг от друга и внешностью, и характером.

Кстати, из приведенных выше расчетов следует простой, но важный вывод. Каждый человек, ныне здравствующий, или когда-либо живший в прошлом на Земле, абсолютно уникален. Шансы появления второго такого же практически равны нулю. Поэтому не надо себя ни с кем сравнивать. Каждый из вас неповторим, и тем уже интересен!

Однако вернемся к нашим половым клеткам. Каждая диплоидная клетка человека содержит 23 пары хромосом. Хромосомы с 1 по 22 пару называются соматическим и по форме они одинаковы. Хромосомы же 23-й пары (половые хромосомы) одинаковы только у женщин. Они и обозначаются латинскими буквами ХХ. У мужчин хромосомы этой пары различны и обозначаются ХY. В гаплоидном наборе яйцеклетки половая хромосома всегда только Х, сперматозоид же может нести или Х или Y хромосому. Если яйцеклетку оплодотворит Х сперматозоид, родится девочка, если Y сперматозоид – мальчик. Все просто!

Почему мейоз у яйцеклетки так долго растянут во времени? Каким образом ежемесячно происходит выбор когорты фолликулов, которые начинают свое развитие и как из них выделяется лидирующий, доминантный, овуляторный фолликул, в котором созреет яйцеклетка? На все эти непростые вопросы у биологов нет пока однозначных ответов. Процесс формирования зрелых яйцеклеток у человека ждет новых исследователей!

Образование и созревание сперматозоидов, как уже было сказано, происходит в семенных канальцах мужской половой железы – яичках . Сформированный сперматозоид имеет длину около 50-60 микрон. Ядро сперматозоида находится в его головке. Оно содержит отцовский наследственный материал. За головкой располагается шейка, в которой имеется крупная извитая митохондрия – органоид, обеспечивающий движения хвоста. Иначе говоря, это своеобразная «энергетическая станция». На головке сперматозоида есть «шапочка». Благодаря ей форма головки - овальная. Но, дело не в форме, а в том, что содержится под «шапочкой». «Шапочка» эта на самом деле является контейнером и называется акросомой , а содержатся в ней ферменты, которые способны растворять оболочку яйцеклетки, что необходимо для проникновения сперматозоида внутрь - в цитоплазму яйцеклетки. Если у сперматозоида нет акросомы, головка у него не овальная, а круглая. Эта патология сперматозоидов называется глобулоспермия (круглоголовые сперматозоиды). Но, беда опять не в форме, а в том, что такой сперматозоид не может оплодотворить яйцеклетку, и мужчина с таким нарушением сперматогенеза до последнего десятилетия был обречен на бездетность. Сегодня благодаря ВРТ есплодие у этих мужчин может быть преодолено, но об этом мы расскажем позднее в главе посвященной микроманипуляциям, в частности, ИКСИ .

Перемещение сперматозоида осуществляется за счет движения его хвостика. Скорость движения сперматозоида не превышает 2-3 мм в минуту. Казалось бы, немного, однако, за 2-3 часа в женском половом тракте сперматозоиды проходят путь, в 80000 раз превышающий их собственные размеры! Будь на месте сперматозоида в этой ситуации человек, ему пришлось бы двигаться вперед со скоростью 60-70 км/час – то есть со скоростью автомобиля!

Сперматозоиды, находящиеся в яичке, неподвижны. Способность к движению они приобретают лишь, проходя по семявыводящим путям под воздействием жидкостей семявыводящих протоков и семенных пузырьков, секрета предстательной железы. В половых путях женщины сперматозоиды сохраняют подвижность в течение 3 - 4 суток, но оплодотворить яйцеклетку они должны в течение 24 часов. Весь процесс развития от стволовой клетки до зрелого сперматозоида длится примерно 72 дня. Однако, поскольку сперматогенез происходит непрерывно и в него одномоментно вступает громадное число клеток, то в яичках всегда есть большое количество спермиев, находящихся на разных этапах сперматогенеза, а запас зрелых сперматозоидов постоянно пополняется. Активность сперматогенеза индивидуальна, но с возрастом снижается.

Как мы уже говорили, яйцеклетки находятся в фолликулах яичника. В результате овуляции яицеклетка попадает в брюшную полость, откуда она «вылавливается» фимбриями маточной трубы и переносится в просвет ее ампулярного отдела. Именно здесь происходит встреча яйцеклетки со сперматозоидами.

Какое же строение имеет зрелая яйцеклетка? Она довольно крупная и достигает 0,11-0,14 мм в диаметре. Сразу после овуляции яйцеклетка окружена скоплением мелких клеток и желатинообразной массой (так называемым лучистым венцом ). Видимо, в таком виде фимбриям маточной трубы удобнее захватывать яйцеклетку. В просвете маточной трубы с помощью ферментов и механического воздействия (биения ресничек эпителия), происходит «очистка» яйцеклетки от лучистого венца. Окончательно освобождение яйцеклетки от лучистого венца происходит после встречи ее со сперматозоидами, которые буквально облепляют яйцеклетку. Каждый сперматозоид выделяет из акросомы фермент, растворяющий не только лучистый венец, но и действующий на оболочку самой яйцеклетки. Эта оболочка называется блестящей, так она выглядит под микроскопом. Выделяя фермент, все сперматозоиды стремятся оплодотворить яйцеклетку, но блестящая оболочка пропустит лишь один из них. Получается, что устремляясь к яйцеклетки, воздействуя на нее коллективно, сперматозоиды «расчищают дорогу» только для одного счастливчика. Отбором сперматозоида роль блестящей оболочки не ограничивается, на ранних стадиях развития эмбриона она поддерживает упорядоченное расположение его клеток (бластомеров). В какой-то момент блестящая оболочка становится тесной, она разрывается и происходит хетчинг (от анг. hatching – «вылупление») – вылупление эмбриона.