Число в бесконечной степени чему равно. Пределы в математике для чайников: объяснение, теория, примеры решений. Что принципиально важно в оформлении решения

09.08.2021

В предыдущей статье мы рассказывали, как правильно вычислять пределы элементарных функций. Если же мы возьмем более сложные функции, то у нас в расчетах появятся выражения с неопределенным значением. Они и называются неопределенностями.

Выделяют следующие основные виды неопределенностей:

  1. Деление 0 на 0 0 0 ;
  2. Деление одной бесконечности на другую ∞ ∞ ;
  3. 0 , возведенный в нулевую степень 0 0 ;

  4. бесконечность, возведенная в нулевую степень ∞ 0 .

Мы перечислили все основные неопределенности. Другие выражения в различных условиях могут принимать конечные или бесконечные значения, следовательно, они не могут считаться неопределенностями.

Раскрытие неопределенностей

Раскрыть неопределенность можно:

  1. С помощью упрощения вида функции (использование формул сокращенного умножения, тригонометрических формул, дополнительное умножение на сопряженные выражения и последующее сокращение и др.);
  2. С помощью замечательных пределов;

    С помощью правила Лопиталя;

    Заменив одно бесконечно малое выражение на эквивалентное ему выражение (как правило, это действие выполняется с помощью таблицы бесконечно малых выражений).

Всю информацию, представленную выше, можно наглядно представить в виде таблицы. С левой стороны в ней приводится вид неопределенности, с правой – подходящий метод ее раскрытия (нахождения предела). Этой таблицей очень удобно пользоваться при расчетах, связанных с нахождением пределов.

Неопределенность Метод раскрытия неопределенности
1. Деление 0 на 0 Преобразование и последующее упрощение выражения. Если выражение имеет вид sin (k x) k x или k x sin (k x) то нужно использовать первый замечательный предел. Если такое решение не подходит, пользуемся правилом Лопиталя или таблицей эквивалентных бесконечно малых выражений
2. Деление бесконечности на бесконечность Преобразование и упрощение выражения либо использование правила Лопиталя
3. Умножение нуля на бесконечность или нахождение разности между двумя бесконечностями Преобразование в 0 0 или ∞ ∞ с последующим применением правила Лопиталя
4. Единица в степени бесконечности Использование второго замечательного предела
5. Возведение нуля или бесконечности в нулевую степень Логарифмирование выражения с применением равенства lim x → x 0 ln (f (x)) = ln lim x → x 0 f (x)

Разберем пару задач. Эти примеры довольно простые: в них ответ получается сразу после подстановки значений и неопределенности при этом не возникает.

Пример 1

Вычислите предел lim x → 1 x 3 + 3 x - 1 x 5 + 3 .

Решение

Выполняем подстановку значений и получаем ответ.

lim x → 1 x 3 + 3 x - 1 x 5 + 3 = 1 3 + 3 · 1 - 1 1 5 + 3 = 3 4 = 3 2

Ответ: lim x → 1 x 3 + 3 x - 1 x 5 + 3 = 3 2 .

Пример 2

Вычислите предел lim x → 0 (x 2 + 2 , 5) 1 x 2 .

Решение

У нас есть показательно степенная функция, в основание которой нужно подставить x = 0 .

(x 2 + 2 , 5) x = 0 = 0 2 + 2 , 5 = 2 , 5

Значит, мы можем преобразовать предел в следующее выражение:

lim x → 0 (x 2 + 2 , 5) 1 x 2 = lim x → 0 2 , 5 1 x 2

Теперь разберемся с показателем – степенной функцией 1 x 2 = x - 2 . Заглянем в таблицу пределов для степенных функций с показателем меньше нуля и получим следующее: lim x → 0 + 0 1 x 2 = lim x → 0 + 0 x - 2 = + ∞ и lim x → 0 + 0 1 x 2 = lim x → 0 + 0 x - 2 = + ∞

Таким образом, можно записать, что lim x → 0 (x 2 + 2 , 5) 1 x 2 = lim x → 0 2 , 5 1 x 2 = 2 , 5 + ∞ .

Теперь берем таблицу пределов показательных функций с основаниями, большими 0 , и получаем:

lim x → 0 (x 2 + 2 , 5) 1 x 2 = lim x → 0 2 , 5 1 x 2 = 2 , 5 + ∞ = + ∞

Ответ: lim x → 0 (x 2 + 2 , 5) 1 x 2 = + ∞ .

Пример 3

Вычислите предел lim x → 1 x 2 - 1 x - 1 .

Решение

Выполняем подстановку значений.

lim x → 1 x 2 - 1 x - 1 = 1 2 - 1 1 - 1 = 0 0

В итоге у нас получилась неопределенность. Используем таблицу выше, чтобы выбрать метод решения. Там указано, что нужно выполнить упрощение выражения.

lim x → 1 x 2 - 1 x - 1 = 0 0 = lim x → 1 (x - 1) · (x + 1) x - 1 = = lim x → 1 (x - 1) · (x + 1) · (x + 1) x - 1 = lim x → 1 (x + 1) · x - 1 = = 1 + 1 · 1 - 1 = 2 · 0 = 0

Как мы видим, упрощение привело к раскрытию неопределенности.

Ответ: lim x → 1 x 2 - 1 x - 1 = 0

Пример 4

Вычислите предел lim x → 3 x - 3 12 - x - 6 + x .

Решение

Подставляем значение и получаем запись следующего вида.

lim x → 3 x - 3 12 - x - 6 + x = 3 - 3 12 - 3 - 6 + 3 = 0 9 - 9 = 0 0

Мы пришли к необходимости делить нуль на нуль, что является неопределенностью. Посмотрим нужный метод решения в таблице – это упрощение и преобразование выражения. Выполним дополнительное умножение числителя и знаменателя на сопряженное знаменателю выражение 12 - x + 6 + x:

lim x → 3 x - 3 12 - x - 6 + x = 0 0 = lim x → 3 x - 3 12 - x + 6 + x 12 - x - 6 + x 12 - x + 6 + x

Домножение знаменателя выполняется для того, чтобы потом можно было воспользоваться формулой сокращенного умножения (разность квадратов) и выполнить сокращение.

lim x → 3 x - 3 12 - x + 6 + x 12 - x - 6 + x 12 - x + 6 + x = lim x → 3 x - 3 12 - x + 6 + x 12 - x 2 - 6 + x 2 = lim x → 3 (x - 3) 12 - x + 6 + x 12 - x - (6 + x) = = lim x → 3 (x - 3) 12 - x + 6 + x 6 - 2 x = lim x → 3 (x - 3) 12 - x + 6 + x - 2 (x - 3) = = lim x → 3 12 - x + 6 + x - 2 = 12 - 3 + 6 + 3 - 2 = 9 + 9 - 2 = - 9 = - 3

Как мы видим, в результате этих действий нам удалось избавиться от неопределенности.

Ответ: lim x → 3 x - 3 12 - x - 6 + x = - 3 .

Важно отметить, что при решении подобных задач подход с использованием домножения используется очень часто, так что советуем запомнить, как именно это делается.

Пример 5

Вычислите предел lim x → 1 x 2 + 2 x - 3 3 x 2 - 5 x + 2 .

Решение

Выполняем подстановку.

lim x → 1 x 2 + 2 x - 3 3 x 2 - 5 x + 2 = 1 2 + 2 · 1 - 3 3 · 1 2 - 5 · 1 + 2 = 0 0

В итоге у нас вышла неопределенность. Рекомендуемый способ решения задачи в таком случае – упрощение выражения. Поскольку при значении x , равном единице, числитель и знаменатель обращаются в 0 , то мы можем разложить их на множители и потом сократить на х - 1 ,и тогда неопределенность исчезнет.

Выполняем разложение числителя на множители:

x 2 + 2 x - 3 = 0 D = 2 2 - 4 · 1 · (- 3) = 16 ⇒ x 1 = - 2 - 16 2 = - 3 x 2 = - 2 + 16 2 = 1 ⇒ x 2 + 2 x - 3 = x + 3 x - 1

Теперь делаем то же самое со знаменателем:

3 x 2 - 5 x + 2 = 0 D = - 5 2 - 4 · 3 · 2 = 1 ⇒ x 1 = 5 - 1 2 · 3 = 2 3 x 2 = 5 + 1 2 · 3 = 1 ⇒ 3 x 2 - 5 x + 3 = 3 x - 2 3 x - 1

Мы получили предел следующего вида:

lim x → 1 x 2 + 2 x - 3 3 x 2 - 5 x + 2 = 0 0 = lim x → 1 x + 3 · x - 1 3 · x - 2 3 · x - 1 = = lim x → 1 x + 3 3 · x - 2 3 = 1 + 3 3 · 1 - 2 3 = 4

Как мы видим, в ходе преобразования нам удалось избавиться от неопределенности.

Ответ: lim x → 1 x 2 + 2 x - 3 3 x 2 - 5 x + 2 = 4 .

Далее нам нужно рассмотреть случаи пределов на бесконечности от степенных выражений. Если показатели этих выражений будут больше 0 , то предел на бесконечности также окажется бесконечным. При этом основное значение имеет самая большая степень, а остальные можно не учитывать.

Например, lim x → ∞ (x 4 + 2 x 3 - 6) = lim x → ∞ x 4 = ∞ или lim x → ∞ x 4 + 4 x 3 + 21 x 2 - 11 5 = lim x → ∞ x 4 5 = ∞ .

Если под знаком предела у нас стоит дробь со степенными выражениями в числителе и знаменателе, то при x → ∞ у нас возникает неопределенность вида ∞ ∞ . Чтобы избавиться от этой неопределенности, нам нужно разделить числитель и знаменатель дроби на x m a x (m , n) . Приведем пример решения подобной задачи.

Пример 6

Вычислите предел lim x → ∞ x 7 + 2 x 5 - 4 3 x 7 + 12 .

Решение

lim x → ∞ x 7 + 2 x 5 - 4 3 x 7 + 12 = ∞ ∞

Степени числителя и знаменателя равны 7 . Делим их на x 7 и получаем:

lim x → ∞ x 7 + 2 x 5 - 4 3 x 7 + 12 = lim x → ∞ x 7 + 2 x 5 - 4 x 7 3 x 7 + 12 x 7 = = lim x → ∞ 1 + 2 x 2 - 4 x 7 3 + 12 x 7 = 1 + 2 ∞ 2 - 4 ∞ 7 3 + 12 ∞ 7 = 1 + 0 - 0 3 + 0 = 1 3

Ответ: lim x → ∞ x 7 + 2 x 5 - 4 3 x 7 + 12 = 1 3 .

Пример 7

Вычислите предел lim x → ∞ x 8 + 11 3 x 2 + x + 1 .

Решение

lim x → ∞ x 8 + 11 3 x 2 + x + 1 = ∞ ∞

Числитель имеет степень 8 3 , а знаменатель 2 . Выполним деление числителя и знаменателя на x 8 3:

lim x → ∞ x 8 + 11 3 x 2 + x + 1 = ∞ ∞ = lim x → ∞ x 8 + 11 3 x 8 3 x 2 + x + 1 x 8 3 = = lim x → ∞ 1 + 11 x 8 3 1 x 2 3 + 1 x 5 3 + 1 x 8 3 = 1 + 11 ∞ 3 1 ∞ + 1 ∞ + 1 ∞ = 1 + 0 3 0 + 0 + 0 = 1 0 = ∞

Ответ: lim x → ∞ x 8 + 11 3 x 2 + x + 1 = ∞ .

Пример 8

Вычислите предел lim x → ∞ x 3 + 2 x 2 - 1 x 10 + 56 x 7 + 12 3 .

Решение

lim x → ∞ x 3 + 2 x 2 - 1 x 10 + 56 x 7 + 12 3 = ∞ ∞

У нас есть числитель в степени 3 и знаменатель в степени 10 3 . Значит, нам нужно разделить числитель и знаменатель на x 10 3:

lim x → ∞ x 3 + 2 x 2 - 1 x 10 + 56 x 7 + 12 3 = ∞ ∞ = lim x → ∞ x 3 + 2 x 2 - 1 x 10 3 x 10 + 56 x 7 + 12 3 x 10 3 = = lim x → ∞ 1 x 1 3 + 2 x 4 3 - 1 x 10 3 1 + 56 x 3 + 12 x 10 3 = 1 ∞ + 2 ∞ - 1 ∞ 1 + 56 ∞ + 12 ∞ 3 = 0 + 0 - 0 1 + 0 + 0 3 = 0

Ответ: lim x → ∞ x 3 + 2 x 2 - 1 x 10 + 56 x 7 + 12 3 = 0 .

Выводы

В случае с пределом отношений возможны три основных варианта:

    Если степень числителя равна степени знаменателя, то предел будет равен отношению коэффициентов при старших степенях.

    Если степень числителя будет больше степени знаменателя, то предел будет равен бесконечности.

    Если степень числителя меньше степени знаменателя, то предел будет равен нулю.

Другие методы раскрытия неопределенностей мы разберем в отдельных статьях.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Производная от функции недалеко падает, а в случае правил Лопиталя она падает точно туда же, куда падает исходная функция. Это обстоятельство помогает в раскрытии неопределённостей вида 0/0 или ∞/∞ и некоторых других неопределённостей, возникающих при вычислении предела отношения двух бесконечно малых или бесконечно больших функций. Вычисление значительно упрощается с помощью этого правила (на самом деле двух правил и замечаний к ним):

Как показывает формула выше, при вычислении предела отношений двух бесконечно малых или бесконечно больших функций предел отношения двух функций можно заменить пределом отношения их производных и, таким образом, получить определённный результат.

Перейдём к более точным формулировкам правил Лопиталя.

Правило Лопиталя для случая предела двух бесконечно малых величин . Пусть функции f (x ) и g (x a . А в самой точке a a производная функции g (x ) не равна нулю (g "(x a равны между собой и равны нулю:

.

Правило Лопиталя для случая предела двух бесконечно больших величин . Пусть функции f (x ) и g (x ) имеют производные (то есть дифференцируемы) в некоторой окрестности точки a . А в самой точке a они могут и не иметь производных. При этом в окрестности точки a производная функции g (x ) не равна нулю (g "(x )≠0 ) и пределы этих функций при стремлении икса к значению функции в точке a равны между собой и равны бесконечности:

.

Тогда предел отношения этих функций равен пределу отношения их производных:

Иными словами, для неопределённостей вида 0/0 или ∞/∞ предел отношения двух функций равен пределу отношения их производных, если последний существует (конечный, то есть равный определённому числу, или бесконечный, то есть равный бесконечности).

Замечания .

1. Правила Лопиталя применимы и тогда, когда функции f (x ) и g (x ) не определены при x = a .

2. Если при вычисления предела отношения производных функций f (x ) и g (x ) снова приходим к неопределённости вида 0/0 или ∞/∞, то правила Лопиталя следует применять многократно (минимум дважды).

3. Правила Лопиталя применимы и тогда, когда аргумент функций (икс) стремится не к конечному числу a , а к бесконечности (x → ∞).

К неопределённостям видов 0/0 и ∞/∞ могут быть сведены и неопределённости других видов.

Раскрытие неопределённостей видов "ноль делить на ноль" и "бесконечность делить на бесконечность"

Пример 1.

x =2 приводит к неопределённости вида 0/0. Поэтому производную каждой функции и получаем

В числителе вычисляли производную многочлена, а в знаменателе - производную сложной логарифмической функции . Перед последним знаком равенства вычисляли обычный предел , подставляя вместо икса двойку.

Пример 2. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

Решение. Подстановка в заданную функцию значения x

Пример 3. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

Решение. Подстановка в заданную функцию значения x =0 приводит к неопределённости вида 0/0. Поэтому вычисляем производные функций в числителе и знаменателе и получаем:

Пример 4. Вычислить

Решение. Подстановка в заданную функцию значения икса, равного плюс бесконечности, приводит к неопределённости вида ∞/∞. Поэтому применим правило Лопиталя:

Замечание. Переходим к примерам, в которых правило Лопиталя приходится применять дважды, то есть приходить к пределу отношений вторых производных, так как предел отношения первых производных представляет собой неопределённость вида 0/0 или ∞/∞.

Раскрытие неопределённостей вида "ноль умножить на бесконечность"

Пример 12. Вычислить

.

Решение. Получаем

В этом примере использовано тригонометрическое тождество .

Раскрытие неопределённостей видов "ноль в степени ноль", "бесконечность в степени ноль" и "один в степени бесконечность"

Неопределённости вида , или обычно приводятся к виду 0/0 или ∞/∞ с помощью логарифмирования функции вида

Чтобы вычислить предел выражения , следует использовать логарифмическое тождество , частным случаем которого является и свойство логарифма .

Используя логарифмическое тождество и свойство непрерывности функции (для перехода за знак предела), предел следует вычислять следующим образом:

Отдельно следует находить предел выражения в показателе степени и возводить e в найденную степень.

Пример 13.

Решение. Получаем

.

.

Пример 14. Вычислить, пользуясь правилом Лопиталя

Решение. Получаем

Вычисляем предел выражения в показателе степени

.

.

Пример 15. Вычислить, пользуясь правилом Лопиталя

Методы решения пределов. Неопределённости.
Порядок роста функции. Метод замены

Пример 4

Найти предел

Это более простой пример для самостоятельного решения. В предложенном примере снова неопределённость ( более высокого порядка роста, чем корень ).

Если «икс» стремится к «минус бесконечности»

Призрак «минус бесконечности» уже давно витал в этой статье. Рассмотрим пределы с многочленами, в которых . Принципы и методы решения будут точно такими же, что и в первой части урока, за исключением ряда нюансов.

Рассмотрим 4 фишки, которые потребуются для решения практических заданий:

1) Вычислим предел

Значение предела зависит только от слагаемого , поскольку оно обладает самым высоким порядком роста. Если , то бесконечно большое по модулю отрицательное число в ЧЁТНОЙ степени , в данном случае – в четвёртой, равно «плюс бесконечности»: . Константа («двойка») положительна , поэтому:

2) Вычислим предел

Здесь старшая степень опять чётная , поэтому: . Но перед расположился «минус» (отрицательная константа –1), следовательно:

3) Вычислим предел

Значение предела зависит только от . Как вы помните из школы, «минус» «выскакивает» из-под нечётной степени, поэтому бесконечно большое по модулю отрицательное число в НЕЧЁТНОЙ степени равно «минус бесконечности», в данном случае: .
Константа («четвёрка») положительна , значит:

4) Вычислим предел

Первый парень на деревне снова обладает нечётной степенью, кроме того, за пазухой отрицательная константа, а значит: Таким образом:
.

Пример 5

Найти предел

Используя вышеизложенные пункты, приходим к выводу, что здесь неопределённость . Числитель и знаменатель одного порядка роста, значит, в пределе получится конечное число. Узнаем ответ, отбросив всех мальков:

Решение тривиально:

Пример 6

Найти предел

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

А сейчас, пожалуй, самый тонкий из случаев:

Пример 7

Найти предел

Рассматривая старшие слагаемые, приходим к выводу, что здесь неопределённость . Числитель более высокого порядка роста, чем знаменатель, поэтому сразу можно сказать, что предел равен бесконечности. Но какой бесконечности, «плюс» или «минус»? Приём тот же – в числителе и знаменателе избавимся от мелочи:

Решаем:

Разделим числитель и знаменатель на

Пример 15

Найти предел

Это пример для самостоятельного решения. Примерный образец чистового оформления в конце урока.

Ещё пара занятных примеров на тему замены переменной:

Пример 16

Найти предел

При подстановке единицы в предел получается неопределённость . Замена переменной уже напрашивается, но сначала преобразуем тангенс по формуле . Действительно, зачем нам тангенс?

Заметьте, что , поэтому . Если не совсем понятно, посмотрите значения синуса в тригонометрической таблице . Таким образом, мы сразу избавляемся от множителя , кроме того, получаем более привычную неопределённость 0:0. Хорошо бы ещё и предел у нас стремился к нулю.

Проведем замену:

Если , то

Под косинусом у нас находится «икс», который тоже необходимо выразить через «тэ».
Из замены выражаем: .

Завершаем решение:

(1) Проводим подстановку

(2) Раскрываем скобки под косинусом.

(4) Чтобы организовать первый замечательный предел , искусственно домножаем числитель на и обратное число .

Задание для самостоятельного решения:

Пример 17

Найти предел

Полное решение и ответ в конце урока.

Это были несложные задачи в своём классе, на практике всё бывает хуже, и, помимо формул приведения , приходится использовать самые разные тригонометрические формулы , а также прочие ухищрения. В статье Сложные пределы я разобрал пару настоящих примеров =)

В канун праздника окончательно проясним ситуацию ещё с одной распространённой неопределённостью:

Устранение неопределённости «единица в степени бесконечность»

Данную неопределённость «обслуживает» второй замечательный предел , и во второй части того урока мы очень подробно рассмотрели стандартные примеры решений, которые в большинстве случаев встречаются на практике. Сейчас картина с экспонентами будет завершена, кроме того, заключительные задания урока будут посвящены пределам-«обманкам», в которых КАЖЕТСЯ, что необходимо применить 2-й замечательный предел, хотя это вовсе не так.

Недостаток двух рабочих формул 2-го замечательного предела состоит в том, что аргумент должен стремиться к «плюс бесконечности» либо к нулю. Но что делать, если аргумент стремится к другому числу?

На помощь приходит универсальная формула (которая на самом деле является следствием второго замечательного предела):

Неопределённость можно устранить по формуле:

Где-то вроде уже пояснял, что обозначают квадратные скобки. Ничего особенного, скобки как скобки. Обычно их используют, чтобы чётче выделить математическую запись.

Выделим существенные моменты формулы:

1) Речь идёт только о неопределённости и никакой другой .

2) Аргумент «икс» может стремиться к произвольному значению (а не только к нулю или ), в частности, к «минус бесконечности» либо к любому конечному числу.

С помощью данной формулы можно решить все примеры урока Замечательные пределы , которые относятся ко 2-му замечательному пределу. Например, вычислим предел :

В данном случае , и по формуле :

Правда, делать так не советую, в традициях всё-таки применять «обычное» оформление решения, если его можно применить. Однако с помощью формулы очень удобно выполнять проверку «классических» примеров на 2-й замечательный предел.

Данную неопределённость «обслуживает» второй замечательный предел , и во второй части того урока мы очень подробно рассмотрели стандартные примеры решений, которые в большинстве случаев встречаются на практике. Сейчас картина с экспонентами будет завершена, кроме того, заключительные задания урока будут посвящены пределам-«обманкам», в которых КАЖЕТСЯ, что необходимо применить 2-ой замечательный предел, хотя это вовсе не так.

Недостаток двух рабочих формул 2-го замечательного предела состоит в том, что аргумент должен стремиться к «плюс бесконечности» либо к нулю. Но что делать, если аргумент стремится к другому числу?

На помощь приходит универсальная формула (которая на самом деле является следствием второго замечательного предела):

Неопределённость можно устранить по формуле:

Где-то вроде уже пояснял, что обозначают квадратные скобки. Ничего особенного, скобки как скобки. Обычно их используют, чтобы чётче выделить математическую запись.

Выделим существенные моменты формулы:

1) Речь идёттолько об определённости и никакой другой .

2) Аргумент «икс» может стремиться к произвольному значению (а не только к нулю или ), в частности, к «минус бесконечности» либо к любому конечному числу.

С помощью данной формулы можно решить все примеры урока Замечательные пределы , которые относятся ко 2-му замечательному пределу. Например, вычислим предел :

В данном случае , и по формуле :

Правда, делать так не советую, в традициях всё-таки применять «обычное» оформление решения, если его можно применить. Однако с помощью формулы очень удобно выполнять проверку «классических» примеров на 2-ой замечательный предел.

Всё это хорошо, правильно, но сейчас в кадре более любопытные кадры:

Пример 18

Вычислить предел

На первом шаге, не устану повторять, подставляем значение «икс» в выражение под знаком предела. А вдруг никакой неопределённости вообще нет? Так бывает! Но не в этот раз. Подставляя «тройку», приходим к выводу, что здесь неопределённость



Используем формулу

Чтобы не таскать за собой букву «е» и не мельчить, показатель удобнее вычислить отдельно:

В данном случае:

Таким образом:

С точки зрения техники вычислений всё рутинно: сначала приводим первое слагаемое к общему знаменателю, затем выносим константы и проводим сокращения, избавляясь от неопределённости 0:0.

В результате:

Обещанный подарок с разностью логарифмов и неопределённостью :

Пример 19

Вычислить предел

Сначала полное решение, потом комменты:

(1)-(2) На первых двух шагах используем формулы . У сложных производных мы «разваливаем» логарифмы, а здесь, наоборот – их нужно «собрать».

(3) Значок предела перемещаем под логарифм. Это можно сделать, поскольку данный логарифм непрерывен на «минус бесконечности». Кроме того, предел же относится к «начинке» логарифма.

(4)-(5) Стандартным приёмом, рассмотренным на базовом уроке про замечательные пределы , преобразуем неопределённость к виду .

(6) Используем формулу .

(7) Экспоненциальная и логарифмическая функция – взаимно обратные функции, поэтому и «е» и логарифм можно убрать. Действительно, согласно свойству логарифма: . Минус перед дробью вносим в знаменатель:

(8) Без комментариев =)

Рассмотренный тип предела не такой редкий, примеров 30-40 у себя нашёл.

Пример 20

Вычислить предел

Это пример для самостоятельного решения. Помимо использования формулы, можно представить предел в виде и заменой свести решение к случаю .

В заключение рассмотрим пределы-«фальшивки».

Вернёмся к неопределённости . Данную неопределённость далеко не всегда можно свести к неопределённости и воспользоваться 2-ым замечательным пределом либо формулой-следствием. Преобразование осуществимо в том случае, если числитель и знаменатель основания степени – эквивалентные бесконечно большие функции . На пример: .

Отвлечёмся от показателя и вычислим предел основания:

В пределе получена единица , значит, числитель и знаменатель не просто одного порядка роста, а ещё и эквивалентны . На уроке Замечательные пределы. Примеры решений мы без проблем свели данный пример к неопределённости и получили ответ.

Аналогичных пределов можно придумать очень много:
и т.д.

Дроби данных примеров объединяет вышеуказанная особенность: . В других случаях при неопределённости 2-ой замечательный предел не применим .

Пример 21

Найти пределы

Как ни старайся, а неопределённость не удастся преобразовать в неопределённость

Здесь числители и знаменатели оснований одного порядка роста, но не эквиваленты : .

Таким образом, 2-ой замечательный предел и, тем более формулу, ПРИМЕНИТЬ НЕЛЬЗЯ .

! Примечание : не путайте с Примером №18, в котором числитель и знаменатель основания не эквивалентны. Там готовая неопределённость , здесь же речь идёт о неопределённости .

Метод решения пределов-«подделок» прост и знакОм: нужно числитель и знаменательоснования разделить на «икс» в старшей степени (невзирая на показатель):

Если числитель и знаменатель основания разного порядка роста, то приём решения точно такой же:

Пример 22

Найти пределы

Это короткие примеры для самостоятельного изучения

Иногда неопределённости может не быть вообще :

Подобные фокусы особенно любимы составителями сборника Кузнецова. Вот почему очень важно ВСЕГДА на первом шаге выполнять подстановку «икса» в выражение под знаком предела!


Пример 2

Старшая степень числителя: 2; старшая степень знаменателя: 3.
:

Пример 4

Разделим числитель и знаменатель на :


Примечание : самым последним действием умножили числитель и знаменатель на , чтобы избавиться от иррациональности в знаменателе.

Пример 6

Разделим числитель и знаменатель на :

Пример 8

Разделим числитель и знаменатель на :

Примечание : слагаемое стремиться к нулю медленнее, чем , поэтому является «главным» нулём знаменателя. .

Пример 22


Примечание : бесконечно малая функция стремится к нулю медленнее, чем , поэтому «более большой» ноль знаменателя играет определяющую роль:

Данная статья: «Второй замечательный предел» посвящена раскрытию в пределах неопределенностей вида:

$ \bigg[\frac{\infty}{\infty}\bigg]^\infty $ и $ ^\infty $.

Так же такие неопределенности можно раскрывать с помощью логарифмирования показательно-степенной функции, но это уже другой метод решения, о котором будет освещено в другой статье.

Формула и следствия

Формула второго замечательного предела записывается следующим образом: $$ \lim_{x \to \infty} \bigg (1+\frac{1}{x}\bigg)^x = e, \text{ где } e \approx 2.718 $$

Из формулы вытекают следствия , которые очень удобно применять для решения примеров с пределами: $$ \lim_{x \to \infty} \bigg (1 + \frac{k}{x} \bigg)^x = e^k, \text{ где } k \in \mathbb{R} $$ $$ \lim_{x \to \infty} \bigg (1 + \frac{1}{f(x)} \bigg)^{f(x)} = e $$ $$ \lim_{x \to 0} \bigg (1 + x \bigg)^\frac{1}{x} = e $$

Стоить заметить, что второй замечательный предел можно применять не всегда к показательно-степенной функции, а только в случаях когда основание стремится к единице. Для этого сначала в уме вычисляют предел основания, а затем уже делают выводы. Всё это будет рассмотрено в примерах решений.

Примеры решений

Рассмотрим примеры решений с использованием прямой формулы и её следствий. Так же разберем случаи, при которых формула не нужна. Достаточно записать только готовый ответ.

Пример 1
Найти предел $ \lim_{x\to\infty} \bigg(\frac{x+4}{x+3} \bigg)^{x+3} $
Решение

Подставим бесконечность в предел и посмотрим на неопределенность: $$ \lim_{x\to\infty} \bigg(\frac{x+4}{x+3} \bigg)^{x+3} = \bigg(\frac{\infty}{\infty}\bigg)^\infty $$

Найдем предел основания: $$ \lim_{x\to\infty} \frac{x+4}{x+3}= \lim_{x\to\infty} \frac{x(1+\frac{4}{x})}{x(1+\frac{3}{x})} = 1 $$

Получили основание равное единице, а это значит уже можно применить второй замечательный предел. Для этого подгоним основание функции под формулу путем вычитания и прибавления единицы:

$$ \lim_{x\to\infty} \bigg(1 + \frac{x+4}{x+3} - 1 \bigg)^{x+3} = \lim_{x\to\infty} \bigg(1 + \frac{1}{x+3} \bigg)^{x+3} = $$

Смотрим на второе следствие и записываем ответ:

$$ \lim_{x\to\infty} \bigg(1 + \frac{1}{x+3} \bigg)^{x+3} = e $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \lim_{x\to\infty} \bigg(1 + \frac{1}{x+3} \bigg)^{x+3} = e $$
Пример 4
Решить предел $ \lim_{x\to \infty} \bigg (\frac{3x^2+4}{3x^2-2} \bigg) ^{3x} $
Решение

Находим предел основания и видим, что $ \lim_{x\to\infty} \frac{3x^2+4}{3x^2-2} = 1 $, значит можно применить второй замечательный предел. Стандартно по плану прибавляем и вычитаем единицу из основания степени:

$$ \lim_{x\to \infty} \bigg (1+\frac{3x^2+4}{3x^2-2}-1 \bigg) ^{3x} = \lim_{x\to \infty} \bigg (1+\frac{6}{3x^2-2} \bigg) ^{3x} = $$

Подгоняем дробь под формулу 2-го замеч. предела:

$$ = \lim_{x\to \infty} \bigg (1+\frac{1}{\frac{3x^2-2}{6}} \bigg) ^{3x} = $$

Теперь подгоняем степень. В степени должна быть дробь равная знаменателю основания $ \frac{3x^2-2}{6} $. Для этого умножим и разделим степень на неё, и продолжим решать:

$$ = \lim_{x\to \infty} \bigg (1+\frac{1}{\frac{3x^2-2}{6}} \bigg) ^{\frac{3x^2-2}{6} \cdot \frac{6}{3x^2-2}\cdot 3x} = \lim_{x\to \infty} e^{\frac{18x}{3x^2-2}} = $$

Предел, расположенный в степени при $ e $ равен: $ \lim_{x\to \infty} \frac{18x}{3x^2-2} = 0 $. Поэтому продолжая решение имеем:

Ответ
$$ \lim_{x\to \infty} \bigg (\frac{3x^2+4}{3x^2-2} \bigg) ^{3x} = 1 $$

Разберем случаи, когда задача похожа на второй замечательный предел, но решается без него.

В статье: «Второй замечательный предел: примеры решений» была разобрана формула, её следствия и приведены частые типы задач по этой теме.